Polya’s Urn and the Martingale Convergence Theorem

نویسنده

  • SHIRONG LIU
چکیده

This paper is about Polya’s Urn and the Martingale Convergence Theorem. I will start with the formal definition, followed by a simple example of martingale and the basic properties of martingale. Then I will explain the Polya’s Urn model and how it contributes to proving the Martingale Convergence Theorem. Finally, I will give a full proof of the Martingale Convergence Theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polya’s Urn and the Beta-bernoulli Process

The Polya’s Urn model is notable within statistics because it generalizes the binomial, hypergeometric, and beta-Bernoulli (beta-binomial) distributions through a single formula. In addition, Polya’s Urn is a multivariate distribution whose variables are exchangeable but not independent. This paper introduces basic probability and Bayesian concepts in order to prove these properties.

متن کامل

UCSD ECE 250 Handout

2. Polya’s urn. Suppose we have an urn containing one red ball and one blue ball. We draw a ball at random from the urn. If it is red, we put the drawn ball plus another red ball into the urn. If it is blue, we put the drawn ball plus another blue ball into the urn. We then repeat this process. At the n-th stage, we draw a ball at random from the urn with n+1 balls, note its color, and put the ...

متن کامل

On Multivalued Supermartingales with Continuous Parameter: Martingale Selectors and Their Regularity

The existence of martingale selectors for a multivalued supermartin-gale with continuous parameter is proved.We also prove the weak regularity of multivalued supermartingales.Using the regularity of Banach-valued martingales,we show a multivalued supermartingale has a cadlag modiication under Kuratowski convergence. x1. Introduction Multivalued martingales and supermartingales with discrete par...

متن کامل

Martingale limit theorems revisited and non-linear cointegrating regression

For a certain class of martingales, the convergence to mixture normal distribution is established under the convergence in distribution for the conditional variance. This is less restrictive in comparison with the classical martingale limit theorem where one generally requires the convergence in probability. The extension removes a main barrier in the applications of the classical martingale li...

متن کامل

On Martingales and Least Squares Linear System Identification

In this paper, a nontrivial generalization of a scalar martingale convergence theorem to the vector case is derived. In particular, a theorem is derived concerning the almxat sure convergence to zero of a (vector) martingale normalized by its (ntatrix) process vaziance. This theorem allows a derivation of almost a~n-e convergence results for least squarea identification algorithms applicable to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016